当前位置:清远传媒网 > 科技 > 数码 > 正文

斯坦福学者研究计算机看脸识同性恋:准确率最高91%

清远传媒 www.gdqynews.com   发布时间:2017-09-09 20:10:08   作者:杨
        斯坦福大学的迈克尔·科辛斯基(Michal Kosinski)和王轶伦发现,通过从3万多张人脸图像中提取出来的特征,计算机识别出同性恋男性的准确率最高可达到91%,同性恋女性则为83%。论文认为,与产前激素理论一致,同性恋男性的长相更“女性化”,下巴更窄,鼻子更长,额头更大,同性恋女性则相反。

  这篇题为《深度神经网络基于人脸图像判断性取向比人类更准确》的论文于9月7日发表在《人格与社会心理学杂志》(Journal of Personality and Social Psychology)上后,引发了媒体和社交网络的热议。

  英国《卫报》担心,这项技术会导致青少年“自测”,夫妻“互测”,而在对同性恋处以死刑的国家,这项技术更可能沦为杀人工具。

  不过,在作者看来,他们的研究是针对人脸识别技术和互联网隐私问题的警告,是对未来可能成真的技术滥用的演示。作者在文章中呼吁,政府和企业应制定相关法规,发展相关技术,降低同性恋群体的隐私风险。

异性恋(左)、同性恋(中)男女的复合面部图像,最右为异性恋(绿色)、同性恋(红色)男女的平均面部标记  异性恋(左)、同性恋(中)男女的复合面部图像,最右为异性恋(绿色)、同性恋(红色)男女的平均面部标记

  论文的摘要写道:“我们发现人脸中包含的有关性取向的信息远比人脑能够感知到的多。我们用深度神经网络从35326张面部图像中提取特征。我们将这些特征输入逻辑回归算法,对性取向进行分类。给定单张面部图像,分类器能以81%的概率区别同性恋和异性恋男性,女性则为71%。人类的判断准确率则要低得多:男性61%,女性54%。给定同一个人的5张面部图像,算法的准确率可以相应提高到91%和83%。分类器利用的面部特征,有鼻子形状等固定特征,也有打扮风格等临时特征。同性恋男性和女性倾向于具备性别非典型的面部形态、表情和打扮风格,这与产前激素暴露影响性取向的理论相符合。而性别分类模型检测同性恋男性的准确率为 57%,同性恋女性的准确率为 58%。这些发现提高了我们对性取向起源以及人类认知缺陷的理解。此外,公司与政府越来越多地使用计算机视觉算法探测人的内在特征,我们的研究揭示出同性恋的隐私与安全正在面临威胁。”

  算法准确率:男性91%,女性83%

  研究者从美国交友网站上获取了公开资料,包括36630名男性的130741张照片和38593名女性的170360张照片,年龄在18岁到40岁之间。他们的性取向则是通过意向伴侣性别获悉的。

  随后,研究者将这些照片中的人脸用Face++软件进行了处理,剔除了一些照片。接着,他们人工筛选这些照片是否是成年白人,性别与网络资料是否相符。最后,他们随即剔除了一些照片,以平衡异性恋和同性恋的人数,留下的样本包含同性恋和异性恋男性各3947名,同性恋和异性恋女性各3441名。

对美国交友网站上获取的公开照片进行处理对美国交友网站上获取的公开照片进行处理

  研究者使用一个名为VGG-Face的深度神经网络提取图像的特征,并以此训练逻辑回归模型。实验结果显示,给定单张面部图像,分类器能以81%的概率区别同性恋和异性恋男性,女性则为71%。给定同一个人的5张面部图像,算法的准确率可以相应提高到91%和83%。

给定个体男性(蓝色)、女性(红色)1至5张照片,算法的准确率提高给定个体男性(蓝色)、女性(红色)1至5张照片,算法的准确率提高

  符合产前激素理论:同性恋男性更“女性化”?

  在引言部分,作者说明,他们选择研究性取向的一个重要原因是“广为接受的性取向的产前激素理论(PHT),预测了外表与性取向的关系”。

  论文写道,根据产前激素理论,男性胚胎过少地暴露在雄性激素中,或女性胚胎过多地暴露在雄性激素中,都可能造成性取向异化。然而,雄性激素同样与两性面部分化有关,产前激素理论预测同性恋人群倾向于具备性别上不典型的面部形态。即,同性恋男性面部应该更女性化,同性恋女性面部应该更男性化。

  研究者通过分类器识别的位点集合成了计算机认为“最像同性恋”和“最不像同性恋”的人脸。论文认为,计算机识别结果与产前激素理论相符合,同性恋长相在性别上更不典型。平均来讲,同性恋男性的下巴更窄,鼻子更长,额头更大;同性恋女性则相反。

颜色越红的区域,在算法中越重要颜色越红的区域,在算法中越重要

  为了进一步检验“同性恋长相更不具备性别典型性”这一假设,研究者还通过一个准确率98%的性别分类器试图区别同性恋和异性恋,发现在男性身上的准确率为 57%,在女性身上的准确率为 58%。论文写到:“数据显示,男性面部的女性化程度与同性恋概率呈正相关,女性则相反。”

  研究的几点局限性

  不过,在论文的讨论部分,作者强调研究结论不应被读者误读。首先,同性恋长相更不具备性别典型性,不代表所有的同性恋男性长相都女性化,也不代表所有同性恋女性长相都不女性化。

  其次,不应误读91%这个实验中的数值。在美国的同性恋比例大约为6%到7%的情况下,分类器需要大幅牺牲准确率,才能覆盖大量的样本。

  论文也自我指出了研究的几点限制:样本限于白人、没有排除双性恋,以及无法排除长相“更同性恋”的人更容易“出柜”这一点。

  作者也抛出了其他几个有趣的问题,比如同性恋男性更少留胡子,主要是生理原因(毛发稀少)还是品味原因?分类器识别男性比女性更准确,是否意味着女性的性取向更具流动性?

  看脸识罪犯、识贫富、识同性恋:科学相面术?

  近年来,计算机视觉识别技术发展迅速。从办理身份证件、电子支付到机场安检、办公门禁,人脸识别技术正在大规模进入人们的日常生活。不过,一些研究者试图通过计算机视觉识别,寻找外表特征和内在性格的联系,引发了广泛的争议。

  去年11月,上海交通大学武筱林教授的《基于面部图像的自动犯罪概率推断》一文指出,机器可以通过照片分辨出谁是罪犯,谁是守法公民,识别准确率在86%以上。随后,加拿大多伦多大学一项机器看脸识贫富的研究,同样引发了一些争议。

  此前,一家以色列初创公司声称其开发的人脸识别程序成功识别了参与2015年11月巴黎恐怖袭击的9名恐怖分子,还能识别恋童癖与白领罪犯。

  尽管这些研究倍受伦理争议,但从论文来看,科辛斯基和王轶伦显然并不认同将这方面的研究完全划归禁区。

  在引言部分,论文提到,相面术可回溯至古中国和古希腊,毕达哥拉斯就曾“看脸”收门生。而意大利外科医生龙勃罗梭在19世纪初开创了“天生犯罪人理论”,指出罪犯可以通过脸部特征识别。

  “如今,相面术被广泛认定为一种糅合迷信与种族主义的伪科学。由于合法性问题,研究、甚至是讨论面部特征和性格之间的联系都成为了禁忌。联系不存在,这成了一个普遍的前提。然而,很多机制暗示,情况是相反的。”

  “重要的是,人类看脸判断性格的准确率低,并不一定说明线索不是明明白白地摆在那里。只是,人类可能缺乏探测或解读的能力……因此,我们用现代计算机视觉算法检验这个假设。”

  同性恋群体危险了!

  论文的作者试图通过这一研究警告我们,社交平台上的公开数据,可以被人利用,制作针对性取向的分类器。文章写道:“预测性取向可能对同性恋男女和整个社会都造成严重威胁,甚至生命威胁。……许多国家的法律认定同性恋是犯罪,8个国家会将同性恋处以死刑。因此,我们让决策者、科技企业和同性恋群体知道看脸识同性恋的准确率可以有多高,这很关键。”

  虽然论文所演示的恰恰是论文所反对的,作者强调,他们并非要制造一种入侵的工具,而是为了演示一些常用的入侵路径。就在眼下,一些政府和企业就在研究人脸识别和内在人格之间的联系,风险预警迫在眉睫。作者希望,他们的研究能提醒政府和企业,制定相关法规,发展相关技术,降低同性恋群体的隐私风险。

  社交网站信息显示,科辛斯基是斯坦福商学院的助理教授,2014年在剑桥大学获得心理学博士学位。他曾供职于微软研究院和剑桥大学,在公开言论中曾多次谈及隐私问题。王轶伦本科毕业于浙江大学,2016年在斯坦福获硕士学位,目前是IDG资本驻旧金山湾区的投资顾问,投资领域专注于AI、机器人、机器学习、计算机视觉等。 

                                                 
王轶伦(左)、科辛斯基(右)
                                                                            王轶伦(左)、科辛斯基(右)                  






                                                                                                                                                                                                                                 (清远编辑JJ)